CLASS - 1X

PROJECTS IN MATHEMATICS

PROJECT: Set of activities in which pupils discover experiment and collect information by themselves in a natural situation to understand a concept and arrive at a conclusion may be called a PROJECT.

Project work will develop the skills in academic standards such as problem solving, logical thinking, mathematical communication, representing data in various forms in daily life situations. This approach is to encourage the pupils to participate, discuss (articulation) and take active part in class room processes.

Project work essentially involves the students in a group work and submitting a report by the students on a given topic, after they worked on it, discussed it and analyzed it from various angles and perspectives.

ASSIGNING PROJECTS - TEACHER'S ROLE

1. Teachers must have a thorough awareness on projects to be assigned to the students.
2. Teachers must give specific and accurate instructions to the students.
3. Teachers must see that all the students must take part in the projects assigned.
4. Allot the projects individually on the basis of student's capabilities and nature of the projects.
5. Teachers must see that children with different abilities are put in each group and give opportunity to select division of work according to their interesting task at the time of allotment of the project.
6. Teachers must analyze and encourage the pupil, while they work on the project.
7. Teachers should act as facilitators.
8. Proper arrangements must be made for the presentation and discussion of each student's project, when the students must be told whom to meet to collect the information needed.
9. Allow the students to make use of the library, computer lab etc.
10. Give time and fix a date to present the project. Each project should be submitted within a week in the prescribed Proforma.
11. Each project can be allotted to more number of pupils just by changing the data available in and around the school.
12. The projects presented should be preserved for future reference and inspection.
13. Every mathematics teacher is more capable to prepare projects based on the Talent/Interest/ Capability of students.
14. Teacher also ideal to the students by adopting one difficult project from each class.
15. Procedure of the project should be expressed by the students using his own words.
16. Each student should submit 4 projects in an academic year.

Welcome your comments and suggestions.

CLASS - IX : MODEL PROJECT PROFORMA

Preliminary Information

$$
\text { Class }: 9
$$

Subject : Mathematics

Name of the Lesson/Unit : SURFACE AREAS AND VOLUME

No. of the Project : 1

Allotment of work :
(i) Preparation of models

- Masters Manikanta Reddy \& Prem kumar
(ii) Measuring and recording of dimensions - Master Venkatesh
(iii) Preparation of tables
- Master Masthan
(iv) Presentation of the project - Master Chakravarthy

DETAILED INFORMATION OF THE PROJECT

1. Title of the Project :

Identify / collect / prepare the models of Cylinder and Cone. Find the formula for its CSA, TSA and Volume. Find CSA, TSA and Volume of collected models by measuring the required dimensions.

2. Objectives of the project :

(i) Identification of cylinder, cone.
(ii) Find the formula for LSA, TSA and Volume of cylinder and cone.
(iii) Find the LSA, TSA and Volume of collected articles which are in the shape of cylinder \& cone.

3. a) Materials used :

Charts, Scale, Scissors, Pencil, cellophane tape, long scale etc.

b) Materials collected :

Water drum, bucket, tea cups, joker's cap, ice-cream cup

4. Tools :

(i) Preparation of materials - Prepared cylinder and cone.
(ii) Identification - Volume of Cube is $1 / 3^{\text {rd }}$ volume of cylinder.
(iii) Comparison - Identification of all measurements.

5. Procedure :

1. Introduction: CYLINDER

I prepare a cylinder model by using the rectangular shaped sheet.

2. Process:

Take a rectangular sheet of length / and breadth b units.
Prepare a cylinder by joining the breadths of rectangule.
' b ' becomes ' h ' of cylinder
' I ' becomes circumference of the cylinder $=2 \pi r$.
Here ' r ' is the radius of the cylinder
LSA of cylinder $=$ Area of rectangle $=1 \times b=2 \pi r \times h=2 \pi r h$

$$
\text { LSA of cylinder }=2 \pi \text { rh Sq.units }
$$

$$
\begin{aligned}
\text { TSA of cylinder } & =\text { LSA }+ \text { Areas of top } \& \text { bottom }\left(2 \pi r^{2}\right) \\
& =2 \pi r h+2 \pi r^{2}=2 \pi r(h+r)
\end{aligned}
$$

$$
\text { TSA of cylinder }=2 \pi r(h+r) \text { Sq.units }
$$

Volume : Volume of cylinder = Area of base x height

$$
\begin{aligned}
=\pi r^{2 x} h & =\pi r^{2} h \\
& V=\pi r^{2} h \text { Cubic units }
\end{aligned}
$$

1. Introduction : CONE

1. Draw a circle and separate a sector from circle. Prepare another same as above.
2. Take one sector and prepare a cone by joining the radii.
3. Take another sector and cut small sectors as many as you can.

These portions are almost like small triangles with base $b_{1}, b_{2}, b_{3} \ldots . b_{n}$ and height equal to slant height ' I ' of the cone.

2. Process:

Curved Surface Area of cone

$$
\begin{aligned}
& =\text { Sum of areas of all triangles } \\
& =1 / 2 b_{1}\left|+1 / 2 b_{2}\right|+\ldots \\
& =1 / 2 \mid\left(b_{1}+b_{2}+\ldots . . . b_{n}\right) \\
& =1 / 2 \mid(\text { circumference of cone }) \\
& =1 / 2 \mid \times 2 \pi r \\
& =\pi r l
\end{aligned}
$$

CSA of cone $=\pi r l$ Sq. units

$$
\begin{aligned}
\text { TSA of cone } & =\text { CSA }+ \text { Area of its base } \\
& =\pi r l+\pi r^{2}=\pi r(1+r)
\end{aligned}
$$

$$
\text { TSA of cone }=\pi r(I+r)
$$

VOLUME OF CONE :

1. Prepare a cylinder and a cone of equal radius and heights.
2. Take the sand into a cone and fill the cylinder.
3. Observe and note how many times you fill the sand into cylinder using cone.
i.e. 3 times volume of cone $=1$ cylinder volume $=\pi r^{2} h$

Volume of cone $V=1 / 3 \pi r^{2} h$ Cubic units

3. Recording the data:

S. No.	Name of the cylinder	Dimensions	CSA $=2 \pi r h$	TSA $=$ $2 \pi r(h+r)$	Volume $V=\pi r^{2} h$
1	Water drum	$\mathrm{r}=$ $\mathrm{h}=$			
2	Bucket	$\mathrm{r}=$ $\mathrm{h}=$			
3	Tea cup	$\mathrm{r}=$ $\mathrm{h}=$			

S. No.	Name of the Cone	Dimensions	$\mathrm{I}=$ $\sqrt{\mathbf{r}^{2}+\mathbf{h}^{2}}$	$\mathrm{CSA}=\pi \mathrm{rl}$	$\mathrm{TSA}=$ $\pi r(1+r)$	Volume $\mathrm{V}=1 / 3 \pi r^{2} h$
1	Joker's cap	$\mathrm{r}=7 \mathrm{~cm}$ $\mathrm{~h}=24 \mathrm{~cm}$				
2	Ice cream cup	$\mathrm{r}=3 \mathrm{~cm}$ $\mathrm{~h}=4 \mathrm{~cm}$				
3	Funnel	$\mathrm{r}=6 \mathrm{~cm}$ $\mathrm{~h}=8 \mathrm{~cm}$				

4. Analysis:

If we take a cylinder and a cone of equal height and radius
Volume of cylinder $V=\pi r^{2} h$
Volume of a cone $=1 / 3 \pi r^{2} h$
Ratio of volumes of cylinder and cone $=\pi r^{2} h: 1 / 3 \pi r^{2} h$

$$
=1: 1 / 3=3: 1
$$

5. Conclusion :

S.No.	Cylinder	Cone
1	LSA $=2 \pi r h$ Sq.units	CSA $=\pi r l$ Sq.units
2	TSA $=2 \pi r(h+r)$ Sq.units	$T S A=\pi r(I+r)$ Sq.units
3	$V=\pi r^{2} h$ Cubic units	$V=1 / 3 \pi r^{2} h$ Cubic units

6. Experiences of the students :

(i) We enjoy while preparing the models i.e.

1. Cylinder from a rectangle.
2. Cone from a sector
(ii) We find out CSA, TSA and Volume of cylinder very easily.
(iii) We feel difficult in finding CSA of cone while cut the sector into smaller triangles.
(iv) We enjoy while finding the volume of cone, filling the cylinder by using cone with same height and radius.
(v) It is very difficult to prepare a cone with equal height and radius of a cylinder.
(vi) It is easy to prepare a cylinder with equal radius and height of a cone.

7. Doubts \& Questions :

1. We cut a sector into small sectors but we take it as triangles, while finding the CSA of a cone.
2. Cane we prepare a cone with equal height and radius of cylinder?

8. Acknowledgement :

1. Convey our sincere thanks to who are cooperate and putting their earnest efforts in completing the project.

9. Reference Books/Resources:

1. Class-VIII \& IX Mathematics text books

10. Signature of the student(s) :

CLASS - IX : LESSON WISE PROJECTS

Sl. No.	Name of the lesson	\quad Title of the Project

| SI.
 No. | Name of the lesson | \quad Title of the Project |
| :--- | :--- | :--- | :--- |

| Sl.
 No. | Name of the lesson | \quad Title of the Project |
| :--- | :--- | :--- | :--- |

CLASS - IX : LESSON WISE ASSIGNMENTS

$\begin{array}{\|l\|l} \hline \text { SL. } \\ \text { NO. } \end{array}$	Name of the lesson	ASSIGNMENTS
1	Real Numbers	A1-1. How Irrational numbers differ from rational numbers, explain with suitable examples? 2. Find the value of $\sqrt{ } 7$ upto six decimal places by long division method? A2-1. Simplify $\sqrt[4]{81}-8 \sqrt[3]{343}+15 \sqrt[5]{32}+225$ 2. Find the values of a and b i) $(\mathrm{v} 3+\sqrt{ } 2) /(\sqrt{ } 3-\sqrt{ } 2)=a+b v 6$ ii) $(\sqrt{ } 5+\sqrt{ } 3) /(2 \sqrt{ } 5-3 \sqrt{ } 3)=a-b \sqrt{ } 15$
2	Polynomials and Factorization	A1-1. If -5 is a zero of a polynomial $p(x)=5 x^{2}-11 x+2 a$,find the value of a ? 2. If 5 and -5 are the zeroes of the polynomial $f(x)=2 x^{3}+x^{2}-a x+b$, find the values of a and b ? A2-1. Find the remainder when $9 x^{3}-3 x^{2}+x-5$ is divided by $(x-2 / 3)$? 2. If the polynomials $2 x^{3}+9 x^{2}+3 x-5$ and $x^{3}+x^{2}-4 x+a$ leave the same remainder when divided by $x-2$ find the value of a ? A3-1. If ($x-2$) and ($x-1 / 2$) are factors of $p x^{2}+5 x+r$, show that $p=r$. 2. If $\left(x^{2}-1\right)$ is a factor of $a x^{4}+b x^{3}+c x^{2}+d x+e$, show that $a+c+e=b+d=0$. 3. If $x^{2}-x-6$ and $x^{2}+3 x-18$ have a common Factor $(x-a)$, then find the value of a ? A4-1. Factorize $9 a^{2}+4 b^{2}+16 c^{2}+12 a b-16 b c-24 c a$? 2. Factorize $27 x^{3}+y^{3}+z^{3}-9 x y z$? A5-1. Verify that $x^{3}+y^{3}+z^{3}-3 x y z=1 / 2(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$ 2. If $x+y+z=0$ then show that $x^{3}+y^{3}+z^{3}=3 x y z$.
3	The Elements of Geometry	A1-1. Write some of Euclid's axioms? 2. Write Euclid's postulates. A2-1. Draw an equilateral triangle whose sides are 5.6 cms . 2. have $B X=1 / 2 A B, B Y=1 / 2 B C$ and $A B=B C$. Show that $B X=B Y$.

$\begin{array}{\|l\|l} \hline \text { SL. } \\ \text { NO. } \end{array}$	Name of the lesson	ASSIGNMENTS	
4	Lines and Angles	1. P In the above figure $A B \\| C D$, find the values of x, y and z ? 2. If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.	
5	Co-ordinate Geometry	A1-1. Plot the points $(1,0),(3,0),(-2,0),(-5,0)$ what do you observe? 2. Plot the points $(0,1),(0,3),(0,-2),(0,-5)$ what do you observe ? A2-1. Plot the points $(0,0),(0,3),(3,4),(4,0)$ and join them with straight lines to make a rectangle and find the area of the rectangle? 2. Plot the points $(2,3),(6,3)$ and $(4,7)$ on a Graph sheet. Join them to make it a triangle. Find the area of the triangle?	
6	Linear Equation in two variables	A1-1. Draw the graph of the equation $2 x+3 y=12$, find co-ordinates of the points where the graph cuts the co-ordinate axes and also find the solutions from the graph 1. whose y-co-ordinate is 3 and 2. x co-ordinate is -3 . 2. When Rupa was born, his father was 25 years old. Form an equation and draw a graph for this data. From the graph find i) The age of the father when Rupa is 25 years old. ii) Rupa's age when her father is 40 years old. A2- 1. Draw the graph of $X=3$ and $y=5$ and write the nature of the lines. 2. Draw the graph of $y=0$ and $x=0$ and what do you notice from the graph?	
7	Triangles	A1-1. If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the another triangle, then the two triangles are congruent. 2. If two sides of a triangle measure 4 cm and 6 cm find all possible measurements (positive integers) of the third side. How many distinct triangles can be obtained?	

$\begin{array}{\|l\|l} \hline \text { SL. } \\ \text { NO. } \end{array}$	Name of the lesson	ASSIGNMENTS
11	Areas	A1-1. Find the area of the figure formed by joining the mid points of the adjacent sides of a rhombus with diagonals 12 cm and 16 cm ? 2. In triangle $A B C, D, E, F$ are the mid points of sides $B C, C A$ and $A B$ respectively. show that i) BDEF is a parallelogram. ii) Area of $D E F=1 / 4$ (area $A B C)$. iii) Area of $B D E F=1 / 2($ area $A B C)$.
12	Circles	A1-1. Construct a Circumcircle of triangle $A B C$ where $A B=5 \mathrm{~cm}$ and $\mathrm{LB}=75^{\circ}$ and $\mathrm{BC}=7 \mathrm{~cm}$. 2. The pairs of opposite angles of a cyclic quadrilateral are supplementary
13	Geometrical constructions	A1-1. Construct a triangle $A B C$ given $B C=5 \mathrm{~cm}, A B+A C=8 \mathrm{~cm}$ and $\mathrm{LABC}=60^{\circ}$ 2. Constuct triangle $A B C$ in which $B C=4.2 \mathrm{~cm} \angle B=30^{\circ}$ and $A B-A C=1.6 \mathrm{~cm}$. A 2.1. Construct a triangle $A B C$ with $\angle B=60^{\circ} \mathrm{LC}=45^{\circ}$. and $A B+B C+C A=11 \mathrm{~cm}$. 2. Construct a segment of circle on a chord of length 7 cm and containing an angle of 60°
14	Probability	A-1.1. A coin is tossed 100 times and the following outcomes are recorded Head 45 times and tails 55 times from the experiment i) compute the probability of each outcomes ii) find the sum of probabilities of all outcomes 2. A bag contains 5 green marbles , 3 blue marbles, 2 red marbles and 2 yellow marbles. one marble is drawn out randomly i) Are the four different colour outcomes equally likely? Explain. ii) Find the probability of drawing each colour marble? iii) Find the sum of their probabilities ?
15	Proofs in mathematics	A1-1. The sum of three interior angles of a triangle is 180°. 2. Prove that if x is odd, then x^{2} is also odd.

