Organic Naming Rules

For complete Rules go to:

http://www.acdlabs.com/iupac/nomenclature/

Organic Compounds

• Consist of mainly four elements

Carbon

Hydrogen

Oxygen

• Nitrogen

Why Do We Need a Separate Set of Rules?

- Examine some typical organic compounds
- CH₄ Carbon tetrahydride
- C_2H_6 Dicarbon hexahydride
- Name these using typical covalent rules

So?

- That wasn't so bad, right?
- How about these:
- C_4H_{10} Tetracarbon decahydride
- C_5H_{12} Pentacarbon ??? hydride
- See my point?

Isomers

• If that's not enough, how about this one:

 $\begin{array}{cccccccc} H & H & H & H \\ & & & | & | & | \\ H - C - C - C - C - C - H \\ & & | & | & | \\ H & H & H \end{array}$

Different Structure

Formula?

 $C_4 H_{10}$

Same Formula Formula?

 $C_{4}H_{10}$

Overall Problems

- Memorizing too many prefixes for large numbers
- Different chemicals having the same formulas
- Keep in mind that thus far we've only dealt with TWO different elements!

So what to do?

• Number of hydrogens is going to be the same, regardless of isomerism

Solution

• Since number of hydrogens don't change with isomerism, why bother naming them?

• Name the molecule simply based on number of CARBONS

• We can always add prefixes or suffixes later for differentiation

Name based on number of Carbons

- 1 Methane
- 2 Ethane
- 3 Propane
- 4 Butane
- 5 Pentane
- 6 Hexane
- 7 Heptane
- 8 Octane
- 9 Nonane
- 10 Decane

Did that Really Help?

 $\begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} \qquad \begin{array}{c} CH_4 \\ Carbon \ tetrahydride \ becomes: \ \ Methane \\ H \\ H \\ H \\ H \\ H \end{array}$

C₈H₁₈ Octacarbon ???hydride becomes: Octane

Branches

- - But how do we deal with branches?

Rules pt. 2

- Identify the longest unbranched chain of carbons
 - Name it as normal
 - Identify the branch
 - Name it but give it a "–yl" suffix
 - Put the names of all branches first, then put name of longest chain

Example

Methyl Propane

Practice

Methyl butane

One More Practice

It doesn't matter which way you go!

(Provided you correctly pick the longest unbranched chain)

Methyl Butane

Be Careful

Methyl Hexane

A Small Wrinkle

Methyl Pentane

Methyl Pentane

These are different molecules, though!!!

So Now What?

- Since two different molecules can't have the same name, we must differentiate
- If we look closely, though, the only difference between them is the position of the methyl group

Positioning

2-Methyl Pentane

Here the methyl group is on the second carbon from the end **3-**Methyl Pentane

Here the methyl group is on the third carbon from the end

Rules pt. 3

- Identify the longest unbranched chain of carbons
 - Name it as normal
 - Identify the branch
- Name it but give it a "-yl" suffix
 - Put the names of all branches first, then put name of longest chain
- Put the **number** of the carbon the branch is on (start numbering from the closest single end)

Practice

H

-C - C - C

н-С-н

Η

H

Η

H

H

H

H

Η

H-C

H

H

-C-

H

| H

Multiple Branches

- So far we've only had one branch
- What happens when there are multple branches?
- Just add a prefix to indicate the number of a particular type of branch

Practice

 2-methyl, 2-methyl heptane Sounds redundant
 2,2 dimethyl heptane

3 ethyl-2,4dimethyl pentane

Is your arm sore yet?

- Are you sick to death of writing all those carbons?
- Even worse, are you sick of writing all those Hydrogens?
- How about this...

Shorthand notation

Keep in mind that we have been ignoring the hydrogens for a long time.

Our names have been based entirely on the positioning of the carbons.

So lets now ignore the hydrogens completely!

Is it that easy?

So is that it?

- Not even close!!
- There are literally millions of different organic compounds.
- What else can we do to make things more complicated?

Rings

- Thus far we have dealt with chains that are straight or branched.
- If hydrocarbons are long enough, one end can wrap around and link up with itself!
- We call these cyclic hydrocarbons.

Cyclic Hydrocarbons

- Name the molecule as normal
- Add the prefix cycloto the front of the name of the longest chain
- Start numbering from the most "important" branch in the ring

Examples

Cyclohexane

Cyclooctane

More Examples

Methyl cyclopentane

1,2 dimethyl cyclohexane

Try These

1 ethyl, 3 methyl cyclobutane

3 methyl, 1 propyl cylclohexane

Multiple Bonds

- So far, even with the cyclic structures we have dealt only with single bonds
- Carbon can make multiple bonds to another carbon
- This changes the name

Why?

Examine Structures

Ethane- notice that each carbon has four bonds

What will happen to the structure if we double bond the two carbons?

$$C_2H_4$$

Each carbon still has four bonds BUT now the hydrogens have changed!!

Naming molecules with multiple bonds

- Name the molecule as normal
- Change the suffix of the longest chain name
- Double bonds = ene
- Triple bonds = yne
- Use numbering and prefixes for positioning and multiple multiple bonds.

ethane

ethene

ethyne

Practice

$$H - \underbrace{\underset{H}{\overset{H}{C}} - \underset{H}{\overset{H}{C}} - \underset{H}{\overset{H}{C}} - \underbrace{\underset{H}{\overset{H}{C}} - \underset{H}{\overset{H}{C}} - \underset{H}{\overset{H}{C}} - \underbrace{\underset{H}{\overset{H}{C}} - \underbrace{\underset{H}{\overset{H}{C}} - \underset{H}{\overset{H}{C}} - \underbrace{\underset{H}{\overset{H}{C}} - \underbrace{\underset{H}{\overset{H}{\leftarrow{H}}{\overset{H}{}} - \underbrace{\underset{H}{\overset{H}{}} - \underbrace{\underset{H}{\overset{H}{}} - \underbrace{\underset{H}{\overset{H}{}} -$$

$$H - C = C + C = C + H$$

3 methyl-1-pentene

How about in Shorthand?

Notice the two lines means the double bond is there!

Practice!

Methyl propene

2,4-dimethyl-2-pentene

3-ethyl-2,4,4-trimethyl-1-pentene

Tough Ones

2 methyl 1,3 butadiene

1,2 dimethyl-1,4 cyclohexadiene

Triples?

3, 3-dimethyl-1-butyne

1,4 cyclohexadiyne

So that's it, right?

- Not even close, bud.
- All this....all this was just for two elements, carbon and hydrogen!!
- We haven't even dealt with any of the others, yet.

Wait!! Don't jump!!

- Get off that bridge.
- It's not that bad provided we arrange things in an organized fashion!

Functional Groups

- Nature has done us a favor.
- There are many common groups that we can organized or file into different categories.
- Then we can name them based on these categories.

Functional Groups

- A group of atoms that, when added to a hydrocarbon chain, alter the chemical properties of the chain.
- Just a few different functional groups to know...

Functional Groups

- Halogens
- R-F, R-Cl, R-Br, R-I
- Alcohols R-OH
 - Ethers R-O-R
- Aldehydes R-COH
 - Ketones R-CO-R
- Carboxylic Acids
 - Esters R-COO-R

• R-COOH

• Amines • R-NH₂

Halides

- Fluorides, Chlorides, Bromides, and Iodides
- Simply name the molecule as normal but add the prefix
 Fluoro, Chloro,
 Bromo, or Iodo as
 necessary

Halides

2, 3 dichlorohexane

3, 3 diiodo-1-pentene

Alcohols

- R-OH
- Name like normal except add an –ol suffix

Ethers

- R-O-R
- Name two "R" groups with –yl endings
- End name in ether

Dimethyl ether

Ethyl methyl ether

Aldehyde

• R-COH

- This is a carbon to oxygen double bond with a hydrogen at the end.
- Name as normal except use a "-al" suffix

Aldehydes

 $\begin{array}{cccccccc} H & H & Cl & H & O \\ & & & | & | & | & | & | \\ H - C - C - C - C - C - C - H \\ & & | & | & | \\ H & H & Cl & H \end{array}$

3,3 dichloropentanal

Ketones

- R-CO-R
- This is a carbon to oxygen double bond but in the center of a hydrocarbon chain rather than the end
- Name as normal but give it a "-one" suffix

Ketones

Carboxylic Acids

- R-COOH or R-CO₂H
- This is a carbon to oxygn double bond with the same carbon single-bonded to an OH group.
- Name as normal except give it the suffix "-anoic acid".

Carboxylic Acids

Butanoic acid

но-с-с-с-F 3-Fluoropropanoic acid

Esters

• R-COO-R

- This is a carbon to oxygen double bond with a carbon to oxygen single bonded to another single bonded carbon
- Name by given secondary branch "-yl" suffix and main branch "-anoate" suffix.

Methyl Pentanoate

Amines

- **R-NH**₂
- Name the "R" group or groups with "-yl" endings
- Add the word "amine"

Methyl amine

Dimethyl amine

Summary

$$R - C - O - R$$

Ester

R—NH₂ Amine

Summary

 \bullet

• Alkanes	• _	"-ane"
• Alkenes	• =	"-ene"
 Alkynes 	• =	"-yne"
• Halides	• R-X	···-0"
 Alcohols 	• R-OH	''-ol''
• Ethers	• R-O-R	"-yl ether"
 Aldehydes 	• R-COH	"-al"
• Ketones	• R-CO-R	"-one"
Carboxylic Acids	• R-COOH	"-anoic acid"
• Esters	• R-COO-R	"-yl" "-anoate"
Amines	• $R-NH_2$	"-yl amine"

Can You Do This?

- YES!
- It takes:
- Memorization
- Practice
- Practice
- Practice
- Practice
- And, oh yes...
- Practice!